Lessons learned from functional assessment of pluripotency-associated transcription factors during early embryogenesis and embryonic stem cells

Priscila Germany Corrêa da Silva, Marcelo Tigre Moura, Ludymila Furtado Cantanhêde, José Carlos Ferreira-Silva, Pábola Santos Nascimento, Roberta Lane de Oliveira Silva, José Pompeu dos Santos Filho, Marcos Antonio Lemos Oliveira


Pluripotency-associated transcription factors (PATF) play significant roles during early embryogenesis and in embryonic stem (ES) cells, such as control of cell-cycle progression, modulation of cellular metabolism, and transcriptional control of differentiation-inducing factors. The review aims to describe the current understanding of how these PATFs contribute to the early embryo and the ES-cell phenotypes. By a selection of representative examples of such PATFs, their roles are described, and some interesting questions are presented concerning their activity in pluripotent cells which have yet to be addressed.


embryology; pluripotent; preimplantation development; totipotency

Texto completo:

PDF PDF (English)


Avilion, A.A.; Nicolis, S.K.; Pevny, L.H.; Perez, L.; Vivian, N.; Lovell-Badge, R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes and Development, 17: 126-140, 2003.

Amit, M.; Carpenter, M.K.; Inokuma, M.S.; Chiu, C.P.; Harris, C.P.; Waknitz, M.A.; Itskovitz- Eldor, J.; Thomson, J.A. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for

prolonged periods of culture. Developmental Biology, 227: 271-278, 2000. Barton, L.J.; Leblanc, M.G.; Lehmann, R. Finding their way: themes in germ cell migration. Current Opinion in Cell Biology, 42: 128137, 2016. Bernardi, M.L; Cotinot, C.; Payen, E.; Delouis, C. Transcription of Y- and X-Linked Genes in Preimplantation Ovine Embryos. Molecular Reproduction and Development, 45: 132138, 1996.

Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., Gifford, D.K., Melton, D.A., Jaenisch, R., Young, R.A. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122: 947-956, 2005.

Bradley, A.; Evans M.; Kaufman, M.H; Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 309: 255256, 1984.

Buehr, M.; Meek, S.; Blair, K.; Yang, J.; Ure, J.; Silva, J.; Mclay, R.; Hall, J.; Ying, Q.L.; Smith, A. Capture of authentic embryonic stem cells from rat blastocysts. Cell, 135: 1287-1298, 2008.

Capecchi, M.R. Altering the genome by homologous recombination. Science, 244: 1288-1292, 1989.

Capecchi, M.R. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nature Reviews Genetics, 6: 507-512, 2005.

Chambers, I.; Colby, D.; Robertson, M.; Nichols, J.; Lee, S.; Tweedie, S.; Smith, A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113: 643-655, 2003.

Chen, X.; Ye, S.; Ying, Q.L. Stem cell maintenance by manipulating signaling pathways: past, current and future. BMB Reports, 48(12): 668- 676, 2015.

Clipsham, R.; Niakan, K.; Mccabe, E.R. NR0B1 and its network partners are expressed early in murine embryos prior to steroidogenic axis organogenesis. Gene Expression Patterns, 4: 3-14, 2004.

Cockburn, K.; Rossant, J. Making the blastocyst: lessons from the mouse. Journal of Clinical Investigation, 120: 995-1003, 2010.

Diakiw, S.M.; D'Andrea, R.J.; Brown, A.L. The double life of KLF5: Opposing roles in regulation of gene-expression, cellular function, and transformation. IUBMB Life, 65: 999-1011, 2013.

Dejosez, M.; Krumenacker, J.S.; Zitur, L.J.; Passeri, M.; Chu, L.F.; Songyang, Z.; Thomson, J.A.; Zwaka, T.P. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell, 133: 1162-1174, 2008.

Dejosez, M.; Levine, S.S.; Frampton, G.M.; Whyte, W.A.; Stratton, S.A.; Barton, M.C.; Gunaratne, P.H.; Young, R.A.; Zwaka, T.P. Ronin/Hcf-1 binds to a hyperconserved enhancer element and regulates genes involved in the growth of embryonic stem cells. Genes and Development, 24: 14791484, 2010.

Ema, M.; Mori, D.; Niwa, H.; Hasegawa, Y.; Yamanaka, Y.; Hitoshi, S.; Mimura, J.; Kawabe, Y.; Hosoya, T.; Morita, M.; Shimosato, D.; Uchida, K.; Suzuki, N.; Yanagisawa, J.; Sogawa, K.; Rossant, J.; Yamamoto, M.; Takahashi, S.; FujiiKuriyama, Y. Krüppel-like factor 5 is essential for blastocyst development and the normal self-renewal of mouse ESCs. Cell Stem Cell, 3: 555-567, 2008.

Evans, M.J.; Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature, 292: 154-156, 1981.

Fagnocchi, L.; Zippo, A. Multiple Roles of MYC in Integrating Regulatory Networks of Pluripotent Stem Cells. Frontiers in Cell and Developmental Biology, 5: 7, 2017.

Farrugia, M.K.; Vanderbilt, D.B.; Salkeni, M.A.; Ruppert, J.M. Kruppel-like Pluripotency Factors as Modulators of Cancer Cell Therapeutic Responses. Cancer Research, 76: 1677-1682, 2016.

Fidalgo, M.; Shekar, P.C.; Ang, Y.S.; Fujiwara, Y.; Orkin, S.H.; Wang, J. Zfp281 functions as a transcriptional repressor for pluripotency of mouse embryonic stem cells. Stem Cells, 29: 1705-1716, 2011.

Fidalgo, M.; Faiola, F.; Pereira, C.F.; Ding, J.; Saunders, A.; Gingold, J.; Schaniel, C.; Lemischka, I.R.; Silva, J.C.; Wang, J. ZFP281 mediates NANOG autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming. Proceedings of the National Academy of Sciences, 40: 16202-16207, 2012.

Fogarty NME, McCarthy A, Snijders KE, Powell BE, Kubikova N, Blakeley P, Lea R, Elder K, Wamaitha SE, Kim D, Maciulyte V, Kleinjung J, Kim JS, Wells D, Vallier L, Bertero A, Turner JMA, Niakan KK. Nature, v.550, n.7674, p. 67-73, 2017.

Frankenberg, S.R.; De Barros, F.R.; Rossant, J.; Renfree, M.B. The mammalian blastocyst. Wiley Interdisciplinary Reviews. Developmental Biology, 5: 210-232, 2016.

Fujita, J.; Crane, A.M.; Souza M.K.; Dejosez, M.; Kyba, M.; Flavell, R.A.; Thomson, J.A.; Zwaka, T.P. Cell Stem Cell, 2: 595-601, 2008.

Galan-Caridad, J.M.; Harel, S.; Arenzana, T.L.; Hou, Z.E.; Doestsch, F.K.; Mirny, L.A.; Reizis, B. Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell, 129: 345-357, 2007.

Goissis, M.D.; Cibelli, J.B. Functional characterization of SOX2 in bovine preimplantation embryos. Biology of Reproduction, 90(30): 2014.

Gurdon, J.B. From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation. Annual Review of Cell and Developmental Biology, 22: 1-22, 2006.

Harel, S.; Tu, E.Y.; Weisberg, S.; Esquilin, M.; Chambers, S.M.; Liu, B.; Carson, C.T.; Studer, L.; Reizis, B.; Tomishima, M.J. ZFX controls the self-renewal of human embryonic stem cells. PLoS One, 7: e42302, 2012.

He, S.; Pant, D.; Schiffmacher, A.; Bischoff, S.; Melican, D.; Gavin, W.; Keefer, C. Developmental expression of pluripotency determining factors in caprine embryos: novel pattern of NANOG protein localization in the nucleolus. Molecular Reproduction and Development, 73(12): 1512-1522, 2006.

Heng, J.C., Orlov, Y.L., Ng, H.H. Transcription actors for the Modulation of Pluripotency and Reprogramming. Cold Spring Harbor Symposium on Quantative Biology, 75: 237- 244, 2010.

Hochedlinger, K.; Jaenisch, R. Nuclear reprogramming and pluripotency. Nature, 441: 1061-1067, 2006.

Ichida, J.K.; Tcw, J.; Williams, L.A.; Carter, A.C.; Shi, Y.; Moura, M.T.; Ziller, M.; SINGH, S.Amabile, G.; Bock, C.; Umezawa, A.; Rubin, L.L.; Bradner, J.E.; Akutsu, H.; Meissner, A.; Eggan, K. Notch inhibition allows oncogeneindependent generation of iPS cells. Nature Chemical Biology, 10: 632-639, 2014.

Jiang, J.; Chan, Y.S.; Loh, Y.H.; Cai, J.; Tong, G.Q.; Lim, C.A.; Robson, P.; Zhong, S.; Ng, H.H. A core KLF circuitry regulates selfrenewal of embryonic stem cells. Nature Cell Biology, 10: 353-360, 2008.

Khalfallah, O.; Rouleau, M.; Barbry, P.; Bardoni, B.; Lalli, E. DAX-1 knockdown in mouse embryonic stem cells induces loss of pluripotency and multilineage differentiation. Stem Cells, 27: 1529-1537, 2009.

Kim, J.; Chu, J.; Shen, X.; Wang, J.; Orkin, S.H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 132: 1049-1061, 2008.

Kwon, J.; Namgoong, S.; Kim, N.H. CRISPR/Cas9 as tool for functional study of genes involved in preimplantation embryo development. PLoS One, 10(3): e0120501, 2015.

Latham, K.E. Mechanisms and control of embryonic genome activation in mammalian embryos. International Review of Cytology, 193: 71-124, 1999. Le Bin, G.C.; Muñoz-Descalzo, S.; Kurowski, A.; Leitch, H.; Lou, X.; Mansfield, W.; EtienneDumeau, C.; Grabole, N.; Mulas, C.; Niwa, H.; Hadjantonakis, A.K.; Nichols, J. OCT4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst. Development, 141: 1001-1010, 2014.

Li, P.; Tong, C.; Mehrian–Shai, R.; Jia, L.; Wu, N.; Yan, Y.; Maxson, R.E.; Schulze, E.N.; Song, H.; Hsieh, C.L.; Pera, M.F.; Ying, Q.L. Germline competent embryonic stem cells derived from rat blastocysts. Cell, 135: 12991310, 2008.

Li, M.; Belmonte, J.C. Ground rules of the pluripotency gene regulatory network. Nature Reviews Genetics, 18: 180-191, 2017.

Loh, Y.H.; Wu, Q.; Chew, J.L.; Vega, V.B.; Zhang, W.; Chen, X.; Bourque, G.; George, J.; Leong, B.; Liu, J.; Wong, K.Y.; Sung, K.W.; Lee, C.W.; Zhao, X.D.; Chiu, K.P.; Lipovich, L.; Kuznetsov, V.A.; Robson, P.; Stanton, L.W.; Wei, C.L.; Ruan, Y.; Lim, B.; Ng, H.H. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38: 431-440, 2006.

Lujan, E.; Zunder, E.R.; Ng, Y.H.; Goronzy, I.N.; Nolan, G.P.; Wernig, M. Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature, 521: 352-356, 2015.

Luoh, S.W.; Bain, P.A.; Polakiewicz, R.D.; Goodheart, M.L.; Gardner, H.; Jaenisch, R.; Page D.C. ZFX mutation results in small animal size and reduced germ cell number in male and female mice. Development, 124: 2275-2284, 1997.

Madeja, Z. E.; Sosnowski, J.; Hryniewicz, K.; Warzych, E.; Pawlak, P.; Rozwadowska, N.; Plusa, B.; Lechniak, D. Changes in subcellular localisation of trophoblast and inner cell mass specific transcription factors during bovine preimplantation development. BMC Developmental Biology, 13: 32, 2013.

Maekawa, M.; Yamaguchi, K.; Nakamura, T.; Shibukawa, R.; Kodanaka, I. Ichisaka, T.; Kawamura, Y.; Mochizuki, H.; Goshima, N.; Yamanaka, S. Direct reprogramming of somatic cells is promoted by maternal transcription factor GLIS1. Nature, 474: 225-229, 2011.

Maekawa, M.; Yamanaka, S. GLIS1, a unique pro-reprogramming factor, may facilitate clinical applications of iPSC technology. Cell Cycle, 10: 3613-3614, 2011.

Maherali, N.; Sridharan, R.; Xie, W.; Utikal, J.; Eminli, S.; Arnold, K.; Stadtfeld, M.; Yachechko, R.; Tchieu, J.; Jaenisch, R.; Plath, K.; Hochedlinger, K. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1: 55-70, 2007.

McLaren, A. Germ and somatic cell lineages in the developing gonad. Molecular and Cellular Endocrinology, 163: 3-9, 2000.

Memili, E.; First, N.L. Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote, 8: 8796, 2000.

Miles, J.R.; McDaneld, T.G.; Wiedmann, R.T.; Cushman, R.A.; Echternkamp, S.E.; Vallet, J.L.; Smith, T.P. MicroRNA expression profile in bovine cumulus-oocyte complexes: possible role of let-7 and miR-106a in the development of bovine oocytes. Animal Reproduction Science, 130: 16-26, 2012.

Mitsui, K.; Tokuzawa, Y.; Itoh, H.; Segawa, K.; Murakami, M.; Takahashi, K.; Maruyama, M.; Maeda, M.; Yamanaka, S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113: 631-642, 2003.

Moore, N.W.; Adams, C.E.; Rowson, L.E. Developmental potential of single blastomeres of the rabbit egg. Journal of reproduction and fertility, 17: 527- 531, 1968.

Moura, M.T. Pluripotency and cellular reprogramming. Anais da Academia Pernambucana de Ciência Agronômica, 8: 138-168, 2012.

Moura, M.T.; Ramos-Deus, P.; Ferreira-Silva, J.C.; Silva, P.G.C.; Cantanhêde, L.F.; Nascimento, P.S.; Silva, R.L.O.; BenkoIseppon, A.M.; Oliveira, M.A.L. Expression of RONIN and NANOG-associated proteins in goat parthenogenetic embryos. Medicina Veterinária (UFRPE), 11(2): 145-152, 2017.

Nagy, A.; Gócza, E.; Diaz, E.M.; Prideaux, V.R.; Iványi, E.; Markkula, M.; Rossant, J. Embryonic stem cells alone are able to support fetal development in the mouse. Development, 110: 815-821, 1990.

Niakan, K.K.; Davis, E.C.; Clipsham, R.C.; Jiang, M.; Dehart, D.B.; Sulik, K.K.; McCabe, E.R. Novel role for the orphan nuclear receptor Dax1 in embryogenesis, different from steroidogenesis. Molecular Genetics and Metabolism, 88: 261-271, 2006.

Nichols, J.; Zevnik, B.; Anastassiadis, K.; Niwa, H.; Klewe-Nebenius, D.; Chambers, J.; Schӧler, H.; Smith, A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95: 379-391, 1998.

Niwa, H.; Miyazaki, J.; Smith, A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24: 372- 376, 2000.

Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature, 448: 313-317, 2007.

Parisi, S.; Russo, T. Regulatory role of KLF5 in early mouse development and in embryonic stem cells. Vitamins and Hormones, 87: 381-397, 2011. Peippo, J.; Farazmand, A.; Kurkilahti, M.; Markkula, M.; Basrur, P.K.; King, W.A. Sexchromosome linked gene expression in-vitro produced bovine embryos. Molecular Human Reproduction, 8: 923-929, 2002.

Picard, L.; Chartrain, I.; King, W.A.; Betteridge, K.J. Production of chimaeric bovine embryos and calves by aggregation of inner cell masses with morulae. Molecular Reproduction and Development, 27: 295304, 1990. Rizzino, A. Concise review: The Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. Stem Cells, 31: 1033-1039, 2013.

Rosner, M.H.; Vigano, M.A.; Ozato, K.; Timmons, P.M.; Poirier, F.; Rigby, P.W.; Staudt, L.M. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature, 345: 686-692, 1990. Rossant, J. Stem cells and lineage development in the mammalian blastocyst. Reproduction, Fertility and Development, 19: 111-118, 2007. Rossant, J. Making the Mouse Blastocyst: Past, Present, and Future. Current Topics in Developmental Biology, 117: 275-288, 2016.

Sakurai, N.; Takahashi, K.; Emura, N.; Fujii, T.; Hirayama, H.; Kageyama, S.; Hashizume, T.; Sawai, K. The Necessity of OCT-4 and CDX2 for Early Development and Gene Expression Involved in Differentiation of Inner Cell Mass and Trophectoderm Lineages in Bovine Embryos. Cellular Reprogramming, 18: 309-318, 2016.

Schöler, H.R.; Hatzopoulos, A.K.; Balling, R.; Suzuki, N.; Gruss, P. A family of octamerspecific proteins present during mouse embryogenesis: evidence for germlinespecific expression of an Oct factor. EMBO Journal, 8: 2543-2550, 1989.

Schöler, H.R.; Ruppert, S.; Suzuki, N.; Chowdhury, K.; Gruss, P. New type of POU domain in germ line-specific protein Oct-4. Nature, 344: 435-439, 1990.

Scognamiglio, R.; Cabezas-Wallscheid, N.; Thier, M.C.; Altamura, S.; Reyes, A.; Prendergast, Á.M.; Baumgärtner, D.; Carnevalli, L.S.; Atzberger, A.; Haas, S.; Von paleske, L.; Boroviak, T.; Wӧrsdӧrfer, P.; Essers, M.A.; Kloz, U.; Eisenman, R.N.; Edenhofer, F.; Bertone, P.; Huber, W.; Van Der Hoeven, F.; Smith, A.; Trumpp, A. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell, 164: 668-680, 2016.

Silva, P.G.C.; Moura, M.T.; Braga, V.A.A.; Ferreira-Silva, J.C.; Nascimento, P.S.; Cantanhêde, L.F.; Chaves, M.S.; Oliveira, M.A.L. 2017. Atividade dos genes relacionados à pluripotência em ovinos. Medicina Veterinária (UFRPE), 11(2): 127-136, 2017.

Singh, K.P.; Kaushik, R.; Mohapatra, S.K.; Garg, V.; Rameshbabu, K.; Singh, M.K.; Palta, P.; Manik, R.S.; Singla, S.K.; Chauhan, M.S. Quantitative expression of pluripotencyrelated genes in parthenogenetically produced buffalo (Bubalus bubalis) embryos and in putative embryonic stem cells derived from them. Gene Expression Patterns, 16: 23-30, 2014. Smith, A.G. Embryo-derived stem cells: of mice and men. Annual Review of Cell and Developmental Biology, 17: 435-462, 2001.

Smith, K.N.; Singh, A.M.; Dalton, S. CMyc represses primitive endoderm differentiation in pluripotent stem cells. Cell Stem Cell, 7: 343-354, 2010. Stickels, R.; Clark, K.; Heider, T.N.; Mattiske, D.M.; Renfree, M.B.; Pask, A.J. DAX1/NR0B1 was expressed during mammalian gonadal development and gametogenesis before it was recruited to the eutherian X chromosome. Biology of Reproduction, 92: 22, 2015.

Subramanian, V.; Klattenhoff, C.A.; Boyer, L.A. Screening for novel regulators of embryonic stem cell identity. Cell Stem Cell, 4: 377378, 2009. Tagarelli, A.; Piro, A.; Lagonia, P.; Tagarelli, G. Hans Spemann. One hundred years before the birth of experimental embryology. Anatomia, Histologia, Embryologia, 33: 28-32, 2004.

Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126: 663-676. 2006.

Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult

human fibroblasts by defined factors. Cell, 131: 861-872, 2007.

Takahashi, K.; Sakurai, N.; Emura, N.; Hashizume, T.; Sawai, K. Effects of downregulating GLIS1 transcript on preimplantation development and gene expression of bovine embryos. Journal Reproduction and Development, 61: 369374, 2015.

Takahashi, K.; Yamanaka, S. A decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews Molecular Cell Biology, 17: 183-193, 2016.

Wang, J.; Rao, S.; Chu, J.; Shen, X.; Levasseur, D.N.; Theunissen, T.W.; Orkin, S.H. A protein interaction network for pluripotency of embryonic stem cells. Nature, 444: 364368, 2006.

Wang, Z.X.; The, C.H.; Chan, C.M.; Chu, C.; Rossbach, M.; Kunarso, G.; Allapitchay, T.B.; Wong, K.Y.; Stanton, L.W. The transcription factor ZFP281 controls embryonic stem cell pluripotency by direct activation and repression of target genes. Stem Cells, 26: 2791-2799, 2008.

Wernig, M.; Meissner, A.; Foreman, R.; Brambrink, T.; Ku, M.; Hochedlinger, K.; Bernstein, B.E.; Jaenisch, R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448: 318-324, 2007. Willadsen, S.M. The development capacity of blastomeres from 4- and 8-cell sheep embryos.. Journal of embryology and experimental morphology, 1981.

Wu, G.; Lei, L.; Schöler, H.R. Totipotency in the mouse. J Mol Med (Berl), 95: 687-694, 2017.

Yeo, J.C.; Ng, H.H. The transcriptional regulation of pluripotency. Cell Research, 23: 20-32, 2013.

Young, R.A. Control of the embryonic stem cell state. Cell, 144: 940-954, 2011.

Yu, R.N.; Ito, M.; Saunders, T.L.; Camper, S.A.; Jameson, J.L. Role of Ahch in gonadal development and gametogenesis. Nature Genetics, 20: 353-357, 1998.

Zeineddine, D.; Hammoud, A.A.; Mortada, M.; Boeuf, H.; Am, J. The Oct4 protein: more than a magic stemness marker. Stem Cells, 3: 74-82, 2014. Zhang, J.; Liu, G.; Ruan, Y.; Wang, J.; Zhao, K.; Wan, Y.; Liu, B.; Zheng, H.; Peng, T.; Wu, W.; He, P.; Hu, F.Q.; Jian, R. DAX1 and NANOG act in parallel to stabilize mouse embryonic stem cells and induced pluripotency. Nature Communications, 5: 5042, 2014.

Zheng, X.; Hu, G. Use of genome-wide RNAi screens to identify regulators of embryonic stem cell pluripotency and self-renewal. Methods in Molecular Biology, 1150: 163173, 2014.

DOI: https://doi.org/10.26605/medvet-n3-1796


  • Não há apontamentos.

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição - Não comercial - Compartilhar igual 4.0 Internacional.

Licença Creative Commons
Medicina Veterinária (UFRPE)
Universidade Federal Rural de Pernambuco
Departamento de Medicina Veterinária
Rua Dom Manoel de Medeiros, s/n
Dois Irmãos, Recife, Pernambuco
CEP: 52171-900. Brasil.
+55 (081) 3320-6401