Reuse of polluting agroindustrial waste for ethanol production by Kluyveromyces marxianus

Joselma Ferreira da Silva, Naiara Priscila Silva Reis Barbosa, Matheus Tavares do Nascimento França, Laureen Michelle Houllou, Carolina Barbosa Malafaia


The development of research for the production of biofuels using low cost substrate has become more relevant in recent years. These include reuse of residues such as crude residual glycerol from biodiesel (CRG) and cheese whey (CW) from the dairy industry. The present work evaluated the ethanol production by isolates of the yeast Kluyveromyces marxianus using agroindustrial residues as an alternative source of carbon. The cultures were rotated 100 rpm at 30 ° C for 24 h. The ethanol production was observed in both media, however, in the CW higher values of ethanol were observed in relation to the CRG. The results showed that K. marxianus isolates were adapted to the use of lactose present in cheese whey as a source of carbon for the production of ethanol with concentrations ranging from 11.41 to 19.9 g.L-1, but did not demonstrate efficiency in the use of crude glycerol for this purpose


Fermentation, Cheese Serum, Glycerol, Biofuel, Yeast

Texto completo:

PDF (English)


ABDEL-BANAT, B. M. A.; NONKLANG, S.; HOSHIDA, H.; AKADA, R. 2009. Random and targeted gene integrations through the control of non-homologous end joining in the yeast Kluyveromyces marxianus. Yeast v. 27, p. 29–39.

ARORA, R.; BEHERA, S.; SHARMA, N. K.; KUMAR, S. 2015. A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production. Front. Microbiol. v. 6, n. 9, p. 1–16.

BANERJEE, S.; MUDLIAR, S.; SEN, R. 2010. Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioprod. Biorefining v. 1, n. 4, p. 77–93.

BEHERA, S.; ARORA, R.; NANDHAGOPAL, N.; KUMAR, S. 2014. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. v. 36, p. 91–106.

BEHERA, S.; SHARMA, N. K.; ARORA, R.; KUMAR, S. 2016. Effect of evolutionary adaption on xylosidase activity in thermotolerant yeast isolates Kluyveromyces marxianus NIRE-K1 and NIRE-K3. Appl. Biochem. Biotechnol. v. 179, n. 7, p. 1143–1154.

DINIZ, R. H. S.; VILLADA, J. C.; ALVIM, M. C. T.; VIDIGAL, P. M. P.; VIEIRA, N. M.; LAMAS-MACEIRAS, M.; CERDÁN, M. E.; GONZÁLEZ-SISO, M. I.; LAHTVEE, P. J.; DA SILVEIRA, W. B. 2017. Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress. Appl. Microbiol. Biotechnol. v. 101, n. 18, p. 6969–6980.

GUIMARÃES, P. M. R.; TEIXEIRA, J. A.; DOMINGUES, L. 2010. Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol. Adv. v. 28, n. 3, p. 375–384.

KÁDÁR, Z.; CHRISTENSEN, A. D.; THOMSEN, M. H.; BJERRE, A. B. 2011. Bioethanol production by inherent enzymes from rye and wheat with addition of organic farming cheese whey. Fuel v. 90, n. 11, p. 3323–3329.

KOUSHKI, M.; JAFARI, M.; AZIZI, M. 2012. Comparison of ethanol production from cheese whey permeate by two yeast strains. J. Food Sci. Technol. v. 49, n. 5, p. 614–619.

KUMAR, S.; SINGH, S. P.; MISHRA, I. M.; ADHIKARI, D. K. 2010. Feasibility of ethanol production with enhanced sugar concentration in bagasse hydrolysate at high temperature using Kluyveromyces sp. IIPE453. Biofuels v. 1, n. 5, p. 697–704.

MENESES, A. D. S. DE, 2009. Processo biotecnológico para aproveitamento de soro obtido na produção do queijo de coalho. Universidade Federal de Sergipe. p. 88.

MOHD AZHAR, S. H.; ABDULLA, R.; JAMBO, S. A.; MARBAWI, H.; GANSAU, J. A.; MOHD FAIK, A. A.; RODRIGUES, K. F.; 2017. Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Reports v. 10, n. 3, p. 52–61.

MURARI, C. S.; SILVA, D. C. M. N. DA; SILVA, B. L. DA; BIANCHI, V. L. DEL 2017. Influence of lactose concentration in bioethanol production from cheese whey. Acta Sci. Technol. v. 39, n. 5, p. 533-541.

OZMIHCI, S.; KARGI, F. 2007. Comparison of yeast strains for batch ethanol fermentation of cheese-whey powder (CWP) solution. Lett. Appl. Microbiol. v. 44, n. 6, p. 602–606.

PRAZERES, A. R.; CARVALHO, F.; RIVAS, J.; 2012. Cheese whey management: A review. J. Environ. Manage. v. 110, p. 48–68.

SAINI, P.; BENIWAL, A.; KOKKILIGADDA, A.; VIJ, S. 2017. Evolutionary adaptation of Kluyveromyces marxianus strain for efficient conversion of whey lactose to bioethanol. Process Biochem. v. 62, p. 69–79.

SANSONETTI, S.; CURCIO, S.; CALABRÒ, V.; IORIO, G. 2010. Optimization of ricotta cheese whey (RCW) fermentation by response surface methodology. Bioresour. Technol. v. 101, n. 16, p. 9156–9162.

SIQUEIRA, F. DA S., 2015. Bioprospecção de leveduras oleaginosas capazes de utilizar o glicerol bruto como fonte de carbono. Universidade Federal de Ouro Preto. p. 60.

SOCCOL, R. C.; VANDENBERGHE, L. P. DE S.; MEDEIROS, A. B. P.; KARP, S. G.; BUCKERIDGE, M.; RAMOS, L.P.; PITARELO, A.P.; FERREIRA-LEITÃO, V.; GOTTSCHALK, L. M. F.; FERRARA, M. A.; BON, E. P. DA S.; MORAES, L. M. P. DE; ARAÚJO, J. DE A.; TORRES, F. A. G. 2009. Bioethanol from lignocelluloses: Status and perspectives in Brasil. Bioresour. Technol. v. 101, n. 13, p. 4820–4825.

TELLI OKUR, M.; EKEN SARAÇOǦLU, N. 2006. Ethanol production from sunflower seed hull hydrolysate by Pichia stipitis under uncontrolled pH conditions in a bioreactor. Turkish J. Eng. Environ. Sci. v. 30, n. 5, p. 317–322.

YANG, F.; HANNA, M. A.; SUN, R. 2012. Value-added uses for crude glycerol–a byproduct of biodiesel production. Biotechnol. Biofuels v. 5, p. 1–10.

ZOPPELLARI, F.; BARDI, L. 2012. Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus. N. Biotechnol. v. 30, n. 6, p. 607–613.



  • Não há apontamentos.

Direitos autorais 2019 Revista e Autor

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição - Não comercial - Compartilhar igual 4.0 Internacional.