Green synthesis of silver nanoparticles using leaf extract from Tabebuia roseoalba and T. pentaphylla

Laureen Michelle Houllou, Robson Antonio Barbosa de Souza, Carolina Barbosa Malafaia, Débora Lorrane Montenegro da Paixão, Alisson Tito Bezerra de Araújo, Mariana Gomes Silva, Gian Carlos Silva Duarte


Metal nanoparticles are nanostructures that can be applied to biotechnology because they present different biological activities. Among them, the silver nanoparticles (AgNPs) are known to present antimicrobial activity allowing their application in several areas such as medicine and industry. The biological synthesis of AgNPs is ecologically correct and advantageous techniques. The objective of this work was to evaluate the synthesis of AgNps through the green synthesis using extracts of leaves of Tabebuia roseoalba and T. pentaphylla grown in vivo and in vitro. The nanoparticle synthesis solution was colorimetrically evaluated, and the nanoparticles were physically characterized. The results obtained demonstrate that both extracts of both Tabebuia species tested are able to synthesize AgNPs, however only when cultured under in vivo conditions. These data suggest that photosynthesis under natural conditions promotes the production of metabolites that are essential to green synthesis.


Nanobiotechnology, AgNPs, Nanosilver, leaves extract

Texto completo:

PDF (English)


AHMED, S.; AHMAD, M.; SWAMI, B. L.; IKRAM, S. 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. v. 7, n. 1, p. 17–28.

ALBERNAZ, V. L. 2014. Síntese verde de nanopartículas de prata com extrato aquoso de folhas de Brosimum gaudichaudii, caracterização fisicoquímica, morfológica e suas aplicações no desenvolvimento de um nanobiossensor eletroquímico. Universidade de Brasília, 122p.

CHANDRA, S.; KUMAR, A.; TOMAR, P. K. 2014. Synthesis and characterization of copper nanoparticles by reducing agent. J. Saudi Chem. Soc. v. 18, n.2, p. 149–153.

CHEN, A.; OSTROM, C. 2015. Palladium-Based Nanomaterials: Synthesis and Electrochemical Applications. Chem. Rev. v. 115, n. 21, p. 11999–12044.

FENG, Q.; WU, J.; CHEN, G.-Q.; CUI, F.-Z.; KIM T. N.; O. KIM, J. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52, 662–668.

GEONMONOND, R. S.; DA SILVA, A. G. M.; CAMARGO, P. H. C. 2018. Controlled synthesis of noble metal nanomaterials: Motivation, principles, and opportunities in nanocatalysis. An. Acad. Bras. Cienc. v. 90, n. 1, p. 719–744.

GRIFFIN, S. G.; WYLLIE, S. G.; MARKHAM, J. L.; LEACH, D. N. 1999. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr. J. v. 14, n. 5, p. 322–332.

IRAVANI, S. 2011. Green synthesis of metal nanoparticles using plants. Green Chem. v. 13, n. 10, p. 2638–2650.

JIANG, J.; PI, J.; CAI, J. 2018. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg. Chem. Appl. v. 2018, p. 1–18.

KHALIL, M. M. H.; ISMAIL, E. H.; EL-BAGHDADY, K. Z.; MOHAMED, D. 2014. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab. J. Chem. v. 7, n. 6, p. 1131–1139.

KHAN, M. A. M.; KUMAR, S.; AHAMED, M.; ALROKAYAN, S. A.; ALSALHI, M. S. 2011. Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res. Lett. v. 6, n. 1, p. 1–8.

KHOSHGARD, K.; HASHEMI, B.; ARBABI, A.; RASAEE, M. J.; SOLEIMANI, M. 2014. Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques. Phys. Med. Biol. v. 59, n. 9, p. 2249–2263.

KOCZKUR, K. M.; MOURDIKOUDIS, S.; POLAVARAPU, L.; SKRABALAK, S. E. 2015. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalt. Trans. v. 44, n. 41, p. 17883–17905.

KREDY, H. M. 2018. The effect of pH, temperature on the green synthesis and biochemical activities of silver nanoparticles from Lawsonia inermis extract. J. Pharm. Sci. Res. v. 10, n.8, p. 2022–2026.

KUPPUSAMY, P.; YUSOFF, M. M.; MANIAM, G. P.; GOVINDAN, N. 2016. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm. J. v. 24, n.4, p. 473–484.

LIU, F.; KOZLOVSKAYA, V.; ZAVGORODNYA, O.; MARTINEZ-LOPEZ, C.; CATLEDGE, S.; KHARLAMPIEVA, E. 2014. Encapsulation of anticancer drug by hydrogen-bonded multilayers of tannic acid. Soft Matter. v. 10, n. 46, p. 9237–9247.

LIU, K.; QU, S.; ZHANG, X.; TAN, F.; WANG, Z. 2013. Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles. Nanoscale Res. Lett. v. 8, n. 1, p. 1–6.

MOGHADDAM, A. B.; NAMVAR, F.; MONIRI, M.; TAHIR, P. M.; AZIZI, S.; MOHAMAD, R. 2015. Nanoparticles biosynthesized by fungi and yeast: A review of their preparation, properties, and medical applications. Molecules v. 20, n.9, p. 16540–16565.

OKAFOR, F.; JANEN, A.; KUKHTAREVA, T.; EDWARDS, V.; CURLEY, M. 2013. Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int. J. Environ. Res. Public Health v. 10, n. 10, p. 5221–5238.

OLAD, A.; GHAZJAHANIYAN, F.; NOSRATI, R. 2018. A Facile and Green Synthesis Route for the Production of Silver Nanoparticles in Large Scale. Int. J. Nanosci. Nanotechnol. v. 14, n. 4, p. 289–296.

PRASAD, R. 2014. Synthesis of Silver Nanoparticles in Photosynthetic Plants. J. Nanoparticles v. 2014, n. 9, p. 1–8.

RAJAN, R.; CHANDRAN, K.; HARPER, S. L.; YUN, S.-I.; KALAICHELVAN, P. T. 2015. Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials. Ind. Crops Prod. v. 70, p. 356–373.

RAO, B.; TANG, R.-C. 2017. Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf. Adv. Nat. Sci. Nanosci. Nanotechnol. v. 8, p. 1–8.

SAHU, P. K.; GIRI, D. D.; SINGH, R.; PANDEY, P.; GUPTA, S. 2013. Therapeutic and Medicinal Uses of Aloe vera : A Review. Sci. Res. v. 2013, n. 11, p. 599–610.

TAHERINIYA, S.; AZAD, I. 2016. Comparing green chemical methods and chemical methods for the synthesis of titanium dioxide nanoparticles. Int. J. Pharm. Sci. Res. v. 7, n. 12, p. 4927–4932.

TARAFDAR, J. C.; SHARMA, S.; RALIYA, R. 2013. Nanotechnology: Interdisciplinary science of applications. African J. Biotechnol. v. 12, n. 3, p. 219–226.

TIPPAYAWAT, P.; PHROMVIYO, N.; BOUEROY, P.; CHOMPOOSOR, A. 2016. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ v. 4, n. 10, p. e2589.

YANG, T.; SHEN, C.; YANG, H.; XIAO, C.; XU, Z.; CHEN, S.; SHI, D.; GAO, H. 2006. Synthesis, characterization and self-assemblies of magnetite nanoparticles. Surf. interface Anal. v. 38, p. 1063–1067.

YOUSEFZADI, M.; RAHIMI, Z.; GHAFORI, V. 2014. The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen) J. Agardh. Mater. Lett. v. 137, p. 1–4.



  • Não há apontamentos.

Direitos autorais 2019 Revista e Autor

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição - Não comercial - Compartilhar igual 4.0 Internacional.