Nonparametric tests for stationary analysis in hydrological data

Uilson Ricardo Venâncio Aires, Guilherme Barbosa Reis, Jasmine Alves Campos

Resumo


One of the main problems for water resources management systems has been the climate change and the intensification of anthropogenic activities in river basins. In this context, this work aimed to analyze the dynamics of land use and cover and its influence on temporal variability on streamflow data. The behavior of hydrological data (streamflow and rainfall) over time was analyzed by applying the nonparametric tests of Mann Kendall and Pettitt. Images derived from orbital sensors using the Random Forest classifier assessed the anthropogenic influence in the area, land use, and cover classification. The rainfall data did not present significant changes over time, according to the applied tests. However, the low annual flow and average annual flow presented nonstationary behavior, with a trend of reduction over time. As rainfall did not change in its patterns over time, the main reason associated with the changes in streamflow regimes was associated with the changes in land use and land cover, especially in the areas for crops, that had an increase of 48% in the study period, which can contribute to increase the demand for water and affect the streamflow. The results obtained confirm the importance of this study for water management systems to adapt itself to the changes in hydrological behavior over time.


Palavras-chave


Land use and land cover; hydrological dataset; Mann Kendall and Pettitt test

Texto completo:

PDF (English)

Referências


Abuelaish, B.; Olmedo, M. T. C. 2016. Scenario of land use and land cover change in the Gaza Strip using remote sensing and GIS models. Arabian Journal of Geosciences, 9, (4), 274. https://doi.org/10.1007/s12517-015-2292-7

Almeida, M. A.; Curi, W. F. 2016. Management of water use in the Paraíba River basin, Brazil, based on concession and collection models. Ambiente e Agua, 11, (4), 989. https://doi.org/10.4136/ambi-agua.1820

Andréassian, V. 2004. Waters and forests: from historical controversy to scientific debate. Journal of Hydrology, 291, (1–2), 1-27. https://doi.org/10.1016/J.JHYDROL.2003.12.015

Bosch, J. M.; Hewlett, J. D. 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55, (1-4), 3-23. https://doi.org/10.1016/0022-1694(82)90117-2

Calder, I. R. 1986. Water use of eucalypts — A review with special reference to South India. Agricultural Water Management, 11, (3-4), 333-342. https://doi.org/10.1016/0378-3774(86)90049-1

Diem, J. E.; Hill, T. C.; Milligan, R. A. 2018. Diverse multi-decadal changes in streamflow within a rapidly urbanizing region. Journal of Hydrology, 556, 61-71. https://doi.org/10.1016/J.JHYDROL.2017.10.026

Ding, Z.; Wang, Y.; Lu, R. 2018. An analysis of changes in temperature extremes in the Three River Headwaters region of the Tibetan Plateau during 1961–2016. Atmospheric Research, 209, 103-114. https://doi.org/10.1016/J.ATMOSRES.2018.04.003

Ebrahimian, M.; Nuruddin, A. A.; Soom, M. A. M.; Sood, A. M.; Neng, L. J.; Galavi, H. 2018. Trend analysis of major hydroclimatic variables in the Langat River basin, Malaysia. Singapore Journal of Tropical Geography, 39, (2), 192-214. https://doi.org/10.1111/sjtg.12234

Engel, V.; Jobbágy, E. G.; Stieglitz, M.; Williams, M.; Jackson, R. B. 2005. Hydrological consequences of Eucalyptus afforestation in the Argentine Pampas. Water Resources Research, 41, (10), W10409. https://doi.org/10.1029/2004WR003761

Farley, K. A.; Jobbagy, E. G.; Jackson, R. B. 2005. Effects of afforestation on water yield: a global synthesis with implications for policy. Global Change Biology, 11, (10), 1565-1576. https://doi.org/10.1111/j.1365-2486.2005.01011.x

GEE, 2017. Google Earth Engine. Available in: https://developers.google.com/earth-engine/. Accessed: Nov. 14, 2017.

Jiang, X. J.; Liu, W.; Chen, C.; Liu, J.; Yuan, Z.Q.; Jin, B.; Yu, X. 2018. Effects of three morphometric features of roots on soil water flow behavior in three sites in China. Geoderma, 320, 161-171. https://doi.org/10.1016/J.GEODERMA.2018.01.035

Jiang, X. J.; Liu, W.; Wu, J.; Wang, P.; Liu, C.; Yuan, Z. Q. 2017. Land Degradation Controlled and Mitigated by Rubber-based Agroforestry Systems through Optimizing Soil Physical Conditions and Water Supply Mechanisms: A Case Study in Xishuangbanna, China. Land Degradation & Development, 28, (7), 2277-2289. https://doi.org/10.1002/ldr.2757

Landis, J. R.; Koch, G. G. 1977. The measurement of observe agreement for categorical data. Biometrics, 31, 159-174.

Milly, P. C. D.; Betancourt, J.; Falkenmark, M.; Hirsch, R. M.; Kundzewicz, Z. W.; Lettenmaier, D. P.; Stouffer, R. J. 2008. Climate change. Stationarity is dead: whither water management? Science, 319, (5863), 573-574. https://doi.org/10.1126/science.1151915

Molina, A.; Vanacker, V.; Balthazar, V.; Mora, D.; Govers, G. 2012). Complex land cover change, water and sediment yield in a degraded Andean environment. Journal of Hydrology, 472-473, 25-35. https://doi.org/10.1016/J.JHYDROL.2012.09.012

Mudbhatkal, A.; Raikar, R. V.; Venkatesh, B.; Mahesha, A. 2017. Impacts of Climate Change on Varied River-Flow Regimes of Southern India. Journal of Hydrologic Engineering, 22, 9, 05017017-1-05017017-1-13. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001556

Pinheiro, A.; Teixeira, L.; Kaufmann, V. 2009. Capacidade de infiltração de água em solos sob diferentes usos e práticas de manejo agrícola. Ambiente e Água, 4, (2), 188-199. https://doi.org/10.4136/ambi-agua.97

Pruski, F. F. 2009. Conservação de solo e água. Editora UFV, Second Edition.

Salviano, M. F.; Groppo, J. D.; Pellegrino, G. Q. 2016. Análise de Tendências em Dados de Precipitação e Temperatura no Brasil. Revista Brasileira de Meteorologia, 31, (1), 64-73. https://doi.org/10.1590/0102-778620150003

Silva, B. M.; Silva, D. D.; Castro, M. M. 2015. Influência da sazonalidade das vazões nos critérios de outorga de uso da água: estudo de caso da bacia do rio Paraopeba. Ambiente e Água, 10, (3), 623-634. https://doi.org/dx.doi.org/10.4136/ambi-agua.1587

Uliana, E. M.; Silva, D. D.; Uliana, E. M.; Rodrigues, B. S.; Corrêdo, L. D. P. 2015. Análise de tendência em séries históricas de vazão e precipitação: uso de teste estatístico não paramétrico. Ambiente e Água, 10, (1), 82-88. https://doi.org/10.4136/ambi-agua.1427

Wang, X.; He, K.; Dong, Z. 2019. Effects of climate change and human activities on runoff in the Beichuan River Basin in the northeastern Tibetan Plateau, China. Catena, 176, 81-93. https://doi.org/10.1016/J.CATENA.2019.01.001

WMO. 1988. Analyzing long time series of hydrological data with respect to climate variability. Geneva: WMO secretariat.

Xue, Z.; Gochis, D.; Yu, W.; Keim, B.; Rohli, R.; Zang, Z.; Ge, Q. 2018. Modeling Hydroclimatic Change in Southwest Louisiana Rivers. Water, 10, (5), 596. https://doi.org/10.3390/w10050596

Zhang, D.; Zhang, Q.; Qiu, J.; Bai, P.; Liang, K.; Li, X. 2018. Intensification of hydrological drought due to human activity in the middle reaches of the Yangtze River, China. Science of The Total Environment, 637-638, 1432-1442. https://doi.org/10.1016/J.SCITOTENV.2018.05.121

Zhang, L.; Dawes, W. R.; Walker, G. R. 2001. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 37, 3, 701-708. https://doi.org/10.1029/2000WR900325




DOI: https://doi.org/10.24221/jeap.4.4.2019.2466.239-250

Apontamentos

  • Não há apontamentos.




Direitos autorais 2019 Revista e Autor

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição - Não comercial - Compartilhar igual 4.0 Internacional.